Review of Probability and Statistics

Instructor: Aneesh Arora

 $Notes\ compiled\ from\ course\ materials/online\ resources/statistics\ books$

Primary Textbook: James H. Stock and Mark W. Watson, *Introduction to Econometrics*, 4th Edition, Pearson.

Contents

Ι	Fundamentals of Probability				
1	Chapter 1: Basic Concepts of Probability 1.1 Experiments, Outcomes, and Events				
2	Chapter 2: Random Variables				
	2.1 Discrete Random Variables				
	2.2 Continuous Random Variables				
3	Chapter 3: Moments of a Distribution				
	3.1 Expected Value (Mean)				
	3.2 Variance and Standard Deviation				
	3.3 Higher-Order Moments				
4	Chapter 4: Bivariate Distributions				
	4.1 Joint, Marginal, and Conditional Distributions				
	4.2 Independence				
	4.3 Covariance and Correlation				
	4.4 Variance of Sums				
5	Chapter 5: Conditional Distributions and Expectations				
	5.1 Conditional Probability and Bayes' Rule				
	5.2 Conditional Expectation				
	5.3 Law of Iterated Expectations				
	5.4 Conditional Variance				
П	Common Probability Distributions and Data				
6	Chapter 6: Key Distributions in Statistics				
	6.1 The Normal Distribution				
	6.2 The Chi-Square (χ^2) Distribution				
	6.3 The Student-t Distribution				
	6.4 The F Distribution				

7	Chapter 7: Outliers and Data Types	
	7.1 Outliers	8
	7.2 Data Types	9
II	I Fundamentals of Statistics	10
8	Chapter 8: Estimation	10
	8.1 Estimators and Estimates	10
	8.2 Estimating the Population Mean and Variance	10
	8.3 Properties of Estimators	10
9	Chapter 9: The Distribution of Sample Means	11
	9.1 The Sampling Distribution	11
	9.2 The Law of Large Numbers (LLN)	11
	9.3 The Central Limit Theorem (CLT)	11
10	Chapter 10: Hypothesis Testing	11
	10.1 The Null and Alternative Hypotheses	11
	10.2 The p-Value	11
	10.3 The t-Statistic	11
	10.4 Errors and Significance	12
11	Chapter 11: Confidence Intervals	12
12	Chapter 12: Comparing Two Populations	12
IV	Problems and Applications	13
13	Exercise Set 1: Based on Stock & Watson, Ch. 2	13
14	Exercise Set 2: Based on Stock & Watson, Ch. 3	13

Part I

Fundamentals of Probability

1 Chapter 1: Basic Concepts of Probability

This section introduces the foundational concepts of probability theory, which are essential for understanding random phenomena.

1.1 Experiments, Outcomes, and Events

- Random Experiment: A repeatable procedure that has a well-defined set of possible results. The outcome of the experiment is not known in advance.
- Outcomes: The mutually exclusive potential results of a random experiment.
- Sample Space (\mathcal{S}): The set of all possible outcomes of a random experiment.
- Event (\mathcal{E}) : A subset of the sample space $(\mathcal{E} \subseteq \mathcal{S})$. An event is a collection of one or more outcomes.

1.2 Set Notation

- Set: A collection of objects, which are called elements of the set.
- Union $(A \cup B)$: The set of all elements that are in either set A or set B (or both).
- Intersection $(A \cap B)$: The set of all elements that belong to both set A and set B.
- Empty Set (\emptyset) : A set with no elements.
- **Disjoint Sets:** Two sets are disjoint if their intersection is the empty set.
- Subset $(A \subseteq B)$: A is a subset of B if every element of A is also an element of B.

1.3 Probability

Probability is a way of quantifying the likelihood that an event will occur.

- **Definition:** A probability is a mapping from all subsets of the sample space S to the interval [0,1]. It can be interpreted as the long-run frequency of an outcome occurring in repeated experiments.
- Axioms of Probability: A probability measure $Pr(\cdot)$ must satisfy these properties:
 - 1. The probability of any event \mathcal{E} is non-negative and no greater than 1: $0 \leq Pr(\mathcal{E}) \leq 1$.
 - 2. The probability of the entire sample space is 1: Pr(S) = 1.
 - 3. For any set of mutually exclusive (disjoint) events $\mathcal{E}_1, \mathcal{E}_2, \ldots$, the probability of their union is the sum of their individual probabilities: $Pr(\mathcal{E}_1 \cup \mathcal{E}_2 \cup \ldots) = Pr(\mathcal{E}_1) + Pr(\mathcal{E}_2) + \ldots$

2 Chapter 2: Random Variables

A random variable is a function that assigns a real number to each outcome in the sample space S.

2.1 Discrete Random Variables

A random variable is **discrete** if it can take on a countable number of distinct values, such as integers.

- Example: Rolling a die, where the sample space is $S = \{1, 2, 3, 4, 5, 6\}$.
- Probability Mass Function (PMF): For a discrete random variable X, the PMF, denoted f(x) or $p_X(x)$, gives the probability that X is exactly equal to some value x.

$$p = f(x) = Pr(X = x)$$

• Cumulative Distribution Function (CDF): The CDF, denoted F(x), gives the probability that the random variable X is less than or equal to a particular value x.

$$F(x) = Pr(X \le x) = \sum_{x_i \le x} f(x_i)$$

2.2 Continuous Random Variables

A random variable is **continuous** if it can take on an uncountably infinite number of possible values within a given range.

- Examples: Measurements of length, weight, or temperature.
- Probability Density Function (PDF): For a continuous random variable, the distribution is described by a PDF, f(x). The probability of X falling within an interval [a, b] is the area under the PDF curve over that interval.

$$Pr(a \le X \le b) = \int_a^b f(x)dx$$

• Cumulative Distribution Function (CDF): The CDF for a continuous variable is the integral of the PDF from $-\infty$ to x. It represents the total area under the curve to the left of x.

$$F(x) = Pr(X \le x) = \int_{-\infty}^{x} f(t)dt$$

The PDF is the derivative of the CDF: $f(x) = \frac{dF(x)}{dx}$.

3 Chapter 3: Moments of a Distribution

Moments are a set of statistical parameters used to measure the shape of a probability distribution.

3.1 Expected Value (Mean)

The **expected value**, or mean, of a random variable is its probability-weighted average value, often denoted as E[X] or μ_X .

• For a discrete random variable:

$$E[X] = \mu_X = \sum_{i=1}^{n} x_i f(x_i)$$

• For a continuous random variable:

$$E[X] = \mu_X = \int_{-\infty}^{\infty} x f(x) dx$$

The expectation of a function of a random variable, g(X), is calculated as:

- Discrete: $E[g(X)] = \sum_{i=1}^{n} g(x_i) f(x_i)$
- Continuous: $E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$

A key property of expectations is **linearity**: For constants a and b, and random variables X and Y:

$$E[aX + bY] = aE[X] + bE[Y]$$

3.2 Variance and Standard Deviation

The **variance** measures the spread or dispersion of a distribution around its mean. It is the expected value of the squared deviation from the mean.

$$var(X) = \sigma_X^2 = E[(X - \mu_X)^2]$$

A useful computational formula is:

$$var(X) = E[X^2] - (E[X])^2$$

The standard deviation, σ_X , is the square root of the variance. It is measured in the same units as the random variable, making it easier to interpret than the variance.

$$\sigma(X) = \sqrt{var(X)}$$

Properties of Variance: For constants a and b:

- var(a) = 0
- $var(a+bX) = b^2 var(X)$

3.3 Higher-Order Moments

- k-th moment: The expected value of X^k , which is $E[X^k]$. The first moment is the mean.
- k-th central moment: The expected value of the k-th power of the deviation from the mean, $E[(X \mu_X)^k]$. The second central moment is the variance.

4 Chapter 4: Bivariate Distributions

This section explores the relationships between two random variables.

4.1 Joint, Marginal, and Conditional Distributions

Let X and Y be two random variables.

- **Joint Distribution:** Describes the probability of X and Y occurring simultaneously.
 - Discrete (Joint PMF): $f_{X,Y}(x,y) = Pr(X=x,Y=y)$.
 - Continuous (Joint PDF): The probability over a region is given by a double integral of the joint PDF, $f_{X,Y}(x,y)$.

- Joint CDF: $F_{X,Y}(x,y) = Pr(X \le x, Y \le y)$.
- Marginal Distribution: The probability distribution of a single variable, irrespective of the other.
 - Discrete (Marginal PMF): $f_X(x) = \sum_y Pr(X = x, Y = y)$.
 - Continuous (Marginal PDF): $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$.
- Conditional Distribution: The distribution of one variable given that the other variable has taken a specific value.

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

4.2 Independence

Two random variables X and Y are **independent** if knowing the value of one provides no information about the value of the other. This holds if and only if their joint distribution is the product of their marginal distributions.

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

If X and Y are independent, then:

- $Pr(A \cap B) = Pr(A) \cdot Pr(B)$
- Pr(A|B) = Pr(A)
- $\bullet \ f_{Y|X}(y|x) = f_Y(y)$

4.3 Covariance and Correlation

These measures describe the strength and direction of the linear relationship between two variables.

• Covariance: Measures how two variables move together.

$$cov(X,Y) = \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$

A useful computational formula is:

$$cov(X,Y) = E[XY] - E[X]E[Y]$$

• Correlation: A standardized measure of covariance that is unit-free and ranges from -1 to 1.

$$corr(X, Y) = \rho_{XY} = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

- $-\rho = +1$: Perfect positive linear relationship.
- $-\rho = -1$: Perfect negative linear relationship.
- $-\rho = 0$: No linear relationship.

4.4 Variance of Sums

The variance of a sum of two random variables is:

$$var(aX + bY) = a^2var(X) + b^2var(Y) + 2ab \cdot cov(X, Y)$$

If X and Y are independent, cov(X,Y) = 0, and the formula simplifies.

5 Chapter 5: Conditional Distributions and Expectations

5.1 Conditional Probability and Bayes' Rule

• Conditional Probability: The probability of an event A occurring, given that event B has already occurred.

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

• Bayes' Rule: Relates the conditional probability of two events.

$$Pr(A|B) = \frac{Pr(B|A)Pr(A)}{Pr(B)}$$

5.2 Conditional Expectation

The **conditional expectation** E[Y|X=x] is the expected value of Y given that X has taken the specific value x. It represents the best prediction of Y given information about X.

5.3 Law of Iterated Expectations

This law states that the unconditional expectation of Y is the weighted average of the conditional expectations of Y given X.

$$E[Y] = E[E[Y|X]]$$

For a discrete variable X:

$$E[Y] = \sum_{i} E[Y|X = x_i] Pr(X = x_i)$$

5.4 Conditional Variance

• Conditional Variance: The variance of a random variable Y given that another variable X has taken a specific value x.

$$var(Y|X) = E[(Y - E[Y|X])^2|X]$$

• Law of Total Variance: The unconditional variance of Y can be decomposed into two parts.

$$var(Y) = E[var(Y|X)] + var(E[Y|X])$$

Part II

Common Probability Distributions and Data

6 Chapter 6: Key Distributions in Statistics

Several probability distributions are fundamental to statistical analysis.

6.1 The Normal Distribution

A continuous distribution characterized by its symmetric, bell-shaped PDF. It is completely defined by its mean (μ) and variance (σ^2) , denoted $Y \sim N(\mu, \sigma^2)$.

- Approximately 95% of the probability lies within $\mu \pm 1.96\sigma$.
- Standard Normal Distribution: $Z \sim N(0,1)$. Any normal random variable Y can be standardized:

 $Z = \frac{Y - \mu}{\sigma} \sim N(0, 1)$

6.2 The Chi-Square (χ^2) Distribution

The distribution of the sum of m squared independent standard normal random variables. It is defined by its **degrees of freedom**, m.

If
$$Z_1, \ldots, Z_m \sim iid \ N(0,1)$$
, then $\sum_{i=1}^m Z_i^2 \sim \chi_m^2$

6.3 The Student-t Distribution

The distribution of the ratio of a standard normal random variable to the square root of an independently distributed chi-squared variable (divided by its degrees of freedom, m).

If
$$Z \sim N(0,1)$$
 and $W \sim \chi_m^2$, then $\frac{Z}{\sqrt{W/m}} \sim t_m$

It is bell-shaped with "fatter" tails than the normal distribution. As degrees of freedom increase, it converges to the standard normal distribution.

6.4 The F Distribution

The distribution of the ratio of two independently distributed chi-squared variables, each divided by its degrees of freedom (m and n).

If
$$W \sim \chi_m^2$$
 and $V \sim \chi_n^2$, then $F = \frac{W/m}{V/n} \sim F_{m,n}$

7 Chapter 7: Outliers and Data Types

7.1 Outliers

An **outlier** is a data point that differs significantly from other observations. Distributions with "thin tails," like the Normal distribution, have a very low probability of producing extreme outliers.

7.2 Data Types

- Experimental Data: Obtained from controlled experiments (e.g., randomized controlled trials).
- Observational Data: Collected without controlling subject assignment (e.g., surveys).
- Cross-Sectional Data: Data on different subjects at a single point in time.
- Time-Series Data: Data for a single subject collected at multiple points in time.
- Longitudinal (Panel) Data: Data on multiple subjects, each observed at multiple points in time.

Part III

Fundamentals of Statistics

8 Chapter 8: Estimation

Statistical inference involves using data from a sample to learn about a population.

8.1 Estimators and Estimates

- Estimator: A function of a sample of data used to infer the value of a population parameter. It is a random variable.
- Estimate: The specific numerical value of an estimator computed from a particular sample. It is a fixed number.

8.2 Estimating the Population Mean and Variance

• Sample Mean (\overline{Y}) : The estimator for the population mean (μ_Y) .

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

• Sample Variance (s_Y^2) : The estimator for the population variance (σ_Y^2) . The division by n-1 is a degrees of freedom adjustment.

$$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2$$

• Standard Error of the Mean $(SE(\overline{Y}))$: An estimator of the standard deviation of the sample mean's sampling distribution.

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

8.3 Properties of Estimators

Desirable characteristics of an estimator include:

- 1. **Unbiasedness:** An estimator is unbiased if its expected value equals the true population parameter $(E[\overline{Y}] = \mu_Y)$.
- 2. Consistency: An estimator is consistent if it converges in probability to the true parameter value as the sample size $n \to \infty$.
- 3. Efficiency: Among all unbiased estimators, the one with the smallest variance is the most efficient. The sample mean is the Best Linear Unbiased Estimator (BLUE) of the population mean.

9 Chapter 9: The Distribution of Sample Means

9.1 The Sampling Distribution

The probability distribution of the sample mean \overline{Y} is called its **sampling distribution**. If observations are i.i.d., this distribution has:

• Mean: $E[\overline{Y}] = \mu_Y$

• Variance: $var(\overline{Y}) = \sigma_{\overline{Y}}^2 = \frac{\sigma_Y^2}{n}$

9.2 The Law of Large Numbers (LLN)

The LLN states that the sample mean \overline{Y} converges in probability to the true population mean μ_Y as the sample size n gets very large.

$$\overline{Y} \xrightarrow{p} \mu_Y$$

9.3 The Central Limit Theorem (CLT)

The CLT states that the sampling distribution of \overline{Y} is approximately normal for large sample sizes, regardless of the population distribution.

$$\overline{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right) \quad \text{for large } n$$

10 Chapter 10: Hypothesis Testing

A formal procedure for deciding between two claims about a population parameter.

10.1 The Null and Alternative Hypotheses

- Null Hypothesis (H_0): The statement being tested, often a claim of "no effect." Example: $H_0: \mu_Y = 20$.
- Alternative Hypothesis (H_1 or H_A): The statement accepted if H_0 is rejected.

- **Two-Sided:** $H_1: \mu_Y \neq 20.$

- One-Sided: $H_1: \mu_Y > 20 \text{ or } H_1: \mu_Y < 20.$

10.2 The p-Value

The **p-value** is the probability of observing a test statistic as extreme as, or more extreme than, the one calculated from the sample, assuming H_0 is true. A small p-value provides evidence against H_0 .

10.3 The t-Statistic

When σ_V^2 is unknown, we use the **t-statistic**:

$$t = \frac{\overline{Y} - \mu_{Y,0}}{SE(\overline{Y})} = \frac{\overline{Y} - \mu_{Y,0}}{s_Y/\sqrt{n}}$$

For large samples, this t-statistic is approximately distributed as a standard normal, N(0,1).

11

10.4 Errors and Significance

- Significance Level (α): A threshold for rejecting H_0 (e.g., 0.05). We reject H_0 if p-value $< \alpha$.
- Type I Error: Rejecting a true null hypothesis $(P(\text{Type I Error}) = \alpha)$.
- Type II Error: Failing to reject a false null hypothesis.
- Power of the Test: The probability of correctly rejecting a false null hypothesis.

11 Chapter 11: Confidence Intervals

A confidence interval is a range of values likely to contain the true population parameter. A 95% confidence interval for the population mean μ_Y is:

$$\left[\overline{Y} - 1.96 \cdot SE(\overline{Y}), \quad \overline{Y} + 1.96 \cdot SE(\overline{Y})\right]$$

12 Chapter 12: Comparing Two Populations

To compare the means of two independent populations (e.g., groups 'm' and 'w'):

- Null Hypothesis: $H_0: \mu_m \mu_w = d_0$ (where often $d_0 = 0$).
- Standard Error of the Difference:

$$SE(\overline{Y}_m - \overline{Y}_w) = \sqrt{\frac{s_m^2}{n_m} + \frac{s_w^2}{n_w}}$$

• t-Statistic for the Difference in Means:

$$t = \frac{(\overline{Y}_m - \overline{Y}_w) - d_0}{SE(\overline{Y}_m - \overline{Y}_w)}$$

Part IV

Problems and Applications

13 Exercise Set 1: Based on Stock & Watson, Ch. 2

- 1. Let Y be the number of "heads" that occur when two fair coins are tossed.
 - 1.a. Derive the probability distribution (PMF) of Y.
 - 1.b. Derive the cumulative probability distribution (CDF) of Y.
 - 1.c. Calculate the mean and variance of Y.
- 2. Using probability tables or software, compute the following probabilities:
 - 2.a. If $Y \sim N(1, 4)$, find $Pr(Y \le 3)$.
 - 2.b. If $Y \sim N(50, 25)$, find $Pr(40 \le Y \le 52)$.
 - 2.c. If $Y \sim \chi_{10}^2$, find Pr(Y > 18.31).
 - 2.d. If $Y \sim t_{15}$, find Pr(Y > 1.75).
- 3. Given $\mu_Y = 100$ and $\sigma_Y^2 = 43$, use the central limit theorem to compute $Pr(101 \le \overline{Y} \le 103)$ for a random sample of size n = 64.
- 4. Use the joint probability distribution table for employment status (Y) and college graduation (X) to answer the following:

Table 1: Joint Distribution of Employment and College Graduation (Sept 2017)

	Unemployed (Y=0)	Employed (Y=1)	Total
Non-College (X=0)	0.026	0.576	0.602
College (X=1)	0.009	0.389	0.398
Total	0.035	0.965	1.000

- 4.a. Compute E[Y].
- 4.b. The unemployment rate is the fraction of the labor force that is unemployed. Show that this is equal to 1 E[Y].
- 4.c. Calculate E[Y|X=1] and E[Y|X=0].
- 4.d. Calculate the unemployment rate for college graduates and non-college graduates.
- 4.e. If a randomly selected person is unemployed, what is the probability they are a college graduate?
- 4.f. Are educational achievement and employment status independent? Explain.

14 Exercise Set 2: Based on Stock & Watson, Ch. 3

- 1. In a population, $\mu_Y=100$ and $\sigma_Y^2=43$. Use the CLT to find:
 - 1.a. For n = 100, find $Pr(\overline{Y} < 101)$.
 - 1.b. For n = 165, find $Pr(\overline{Y} > 98)$.
- 2. In a survey of 400 likely voters, 215 plan to vote for the incumbent. Let p be the true fraction of voters who prefer the incumbent.

- 2.a. Estimate p.
- 2.b. Calculate the standard error of your estimate.
- 2.c. What is the p-value for the test $H_0: p = 0.5$ vs. $H_1: p \neq 0.5$?
- 2.d. Did the survey contain statistically significant evidence that the incumbent was ahead at the time of the survey?
- 3. Data on 5th-grade test scores for 420 California school districts yielded $\overline{Y}=654.2$ and $s_Y=19.1.$
 - 3.a. Construct a 95% confidence interval for the mean test score.
 - 3.b. The data was divided by class size, with the following results:

Table 2: Test Score Data by Class Size

Class Size	Avg. Score (\overline{Y})	Std. Dev. (s_Y)	n
Small (< 20)	657.4	19.4	238
Large (≥ 20)	650.0	17.9	182

Is there statistically significant evidence that districts with smaller classes have higher average test scores? Explain.