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Part I

Fundamentals of Probability

1 Chapter 1: Basic Concepts of Probability

This section introduces the foundational concepts of probability theory, which are essential for
understanding random phenomena.

1.1 Experiments, Outcomes, and Events

• Random Experiment: A repeatable procedure that has a well-defined set of possible
results. The outcome of the experiment is not known in advance.

• Outcomes: The mutually exclusive potential results of a random experiment.

• Sample Space (S): The set of all possible outcomes of a random experiment.

• Event (E): A subset of the sample space (E ⊆ S). An event is a collection of one or more
outcomes.

1.2 Set Notation

• Set: A collection of objects, which are called elements of the set.

• Union (A ∪B): The set of all elements that are in either set A or set B (or both).

• Intersection (A ∩B): The set of all elements that belong to both set A and set B.

• Empty Set (∅): A set with no elements.

• Disjoint Sets: Two sets are disjoint if their intersection is the empty set.

• Subset (A ⊆ B): A is a subset of B if every element of A is also an element of B.

1.3 Probability

Probability is a way of quantifying the likelihood that an event will occur.

• Definition: A probability is a mapping from all subsets of the sample space S to the
interval [0, 1]. It can be interpreted as the long-run frequency of an outcome occurring in
repeated experiments.

• Axioms of Probability: A probability measure Pr(·) must satisfy these properties:

1. The probability of any event E is non-negative and no greater than 1: 0 ≤ Pr(E) ≤ 1.

2. The probability of the entire sample space is 1: Pr(S) = 1.

3. For any set of mutually exclusive (disjoint) events E1, E2, . . . , the probability of their
union is the sum of their individual probabilities: Pr(E1 ∪ E2 ∪ . . . ) = Pr(E1) +
Pr(E2) + . . . .

2 Chapter 2: Random Variables

A random variable is a function that assigns a real number to each outcome in the sample
space S.
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2.1 Discrete Random Variables

A random variable is discrete if it can take on a countable number of distinct values, such as
integers.

• Example: Rolling a die, where the sample space is S = {1, 2, 3, 4, 5, 6}.

• Probability Mass Function (PMF): For a discrete random variable X, the PMF,
denoted f(x) or pX(x), gives the probability that X is exactly equal to some value x.

p = f(x) = Pr(X = x)

• Cumulative Distribution Function (CDF): The CDF, denoted F (x), gives the prob-
ability that the random variable X is less than or equal to a particular value x.

F (x) = Pr(X ≤ x) =
∑
xi≤x

f(xi)

2.2 Continuous Random Variables

A random variable is continuous if it can take on an uncountably infinite number of possible
values within a given range.

• Examples: Measurements of length, weight, or temperature.

• Probability Density Function (PDF): For a continuous random variable, the distri-
bution is described by a PDF, f(x). The probability of X falling within an interval [a, b]
is the area under the PDF curve over that interval.

Pr(a ≤ X ≤ b) =

∫ b

a
f(x)dx

• Cumulative Distribution Function (CDF): The CDF for a continuous variable is the
integral of the PDF from −∞ to x. It represents the total area under the curve to the
left of x.

F (x) = Pr(X ≤ x) =

∫ x

−∞
f(t)dt

The PDF is the derivative of the CDF: f(x) = dF (x)
dx .

3 Chapter 3: Moments of a Distribution

Moments are a set of statistical parameters used to measure the shape of a probability distri-
bution.

3.1 Expected Value (Mean)

The expected value, or mean, of a random variable is its probability-weighted average value,
often denoted as E[X] or µX .

• For a discrete random variable:

E[X] = µX =

n∑
i=1

xif(xi)
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• For a continuous random variable:

E[X] = µX =

∫ ∞

−∞
xf(x)dx

The expectation of a function of a random variable, g(X), is calculated as:

• Discrete: E[g(X)] =
∑n

i=1 g(xi)f(xi)

• Continuous: E[g(X)] =
∫∞
−∞ g(x)f(x)dx

A key property of expectations is linearity: For constants a and b, and random variables X
and Y :

E[aX + bY ] = aE[X] + bE[Y ]

3.2 Variance and Standard Deviation

The variance measures the spread or dispersion of a distribution around its mean. It is the
expected value of the squared deviation from the mean.

var(X) = σ2
X = E[(X − µX)2]

A useful computational formula is:

var(X) = E[X2]− (E[X])2

The standard deviation, σX , is the square root of the variance. It is measured in the same
units as the random variable, making it easier to interpret than the variance.

σ(X) =
√
var(X)

Properties of Variance: For constants a and b:

• var(a) = 0

• var(a+ bX) = b2var(X)

3.3 Higher-Order Moments

• k-th moment: The expected value of Xk, which is E[Xk]. The first moment is the mean.

• k-th central moment: The expected value of the k-th power of the deviation from the
mean, E[(X − µX)k]. The second central moment is the variance.

4 Chapter 4: Bivariate Distributions

This section explores the relationships between two random variables.

4.1 Joint, Marginal, and Conditional Distributions

Let X and Y be two random variables.

• Joint Distribution: Describes the probability of X and Y occurring simultaneously.

– Discrete (Joint PMF): fX,Y (x, y) = Pr(X = x, Y = y).

– Continuous (Joint PDF): The probability over a region is given by a double
integral of the joint PDF, fX,Y (x, y).
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– Joint CDF: FX,Y (x, y) = Pr(X ≤ x, Y ≤ y).

• Marginal Distribution: The probability distribution of a single variable, irrespective
of the other.

– Discrete (Marginal PMF): fX(x) =
∑

y Pr(X = x, Y = y).

– Continuous (Marginal PDF): fX(x) =
∫∞
−∞ fX,Y (x, y)dy.

• Conditional Distribution: The distribution of one variable given that the other variable
has taken a specific value.

fY |X(y|x) =
fX,Y (x, y)

fX(x)

4.2 Independence

Two random variables X and Y are independent if knowing the value of one provides no
information about the value of the other. This holds if and only if their joint distribution is the
product of their marginal distributions.

fX,Y (x, y) = fX(x)fY (y)

If X and Y are independent, then:

• Pr(A ∩B) = Pr(A) · Pr(B)

• Pr(A|B) = Pr(A)

• fY |X(y|x) = fY (y)

4.3 Covariance and Correlation

These measures describe the strength and direction of the linear relationship between two vari-
ables.

• Covariance: Measures how two variables move together.

cov(X,Y ) = σXY = E[(X − µX)(Y − µY )]

A useful computational formula is:

cov(X,Y ) = E[XY ]− E[X]E[Y ]

• Correlation: A standardized measure of covariance that is unit-free and ranges from -1
to 1.

corr(X,Y ) = ρXY =
cov(X,Y )

σXσY

– ρ = +1: Perfect positive linear relationship.

– ρ = −1: Perfect negative linear relationship.

– ρ = 0: No linear relationship.

4.4 Variance of Sums

The variance of a sum of two random variables is:

var(aX + bY ) = a2var(X) + b2var(Y ) + 2ab · cov(X,Y )

If X and Y are independent, cov(X,Y ) = 0, and the formula simplifies.
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5 Chapter 5: Conditional Distributions and Expectations

5.1 Conditional Probability and Bayes’ Rule

• Conditional Probability: The probability of an event A occurring, given that event B
has already occurred.

Pr(A|B) =
Pr(A ∩B)

Pr(B)

• Bayes’ Rule: Relates the conditional probability of two events.

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)

5.2 Conditional Expectation

The conditional expectation E[Y |X = x] is the expected value of Y given that X has taken
the specific value x. It represents the best prediction of Y given information about X.

5.3 Law of Iterated Expectations

This law states that the unconditional expectation of Y is the weighted average of the conditional
expectations of Y given X.

E[Y ] = E[E[Y |X]]

For a discrete variable X:

E[Y ] =
∑
i

E[Y |X = xi]Pr(X = xi)

5.4 Conditional Variance

• Conditional Variance: The variance of a random variable Y given that another variable
X has taken a specific value x.

var(Y |X) = E[(Y − E[Y |X])2|X]

• Law of Total Variance: The unconditional variance of Y can be decomposed into two
parts.

var(Y ) = E[var(Y |X)] + var(E[Y |X])
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Part II

Common Probability Distributions and
Data

6 Chapter 6: Key Distributions in Statistics

Several probability distributions are fundamental to statistical analysis.

6.1 The Normal Distribution

A continuous distribution characterized by its symmetric, bell-shaped PDF. It is completely
defined by its mean (µ) and variance (σ2), denoted Y ∼ N(µ, σ2).

• Approximately 95% of the probability lies within µ± 1.96σ.

• Standard Normal Distribution: Z ∼ N(0, 1). Any normal random variable Y can be
standardized:

Z =
Y − µ

σ
∼ N(0, 1)

6.2 The Chi-Square (χ2) Distribution

The distribution of the sum of m squared independent standard normal random variables. It is
defined by its degrees of freedom, m.

If Z1, . . . , Zm ∼ iid N(0, 1), then
m∑
i=1

Z2
i ∼ χ2

m

6.3 The Student-t Distribution

The distribution of the ratio of a standard normal random variable to the square root of an
independently distributed chi-squared variable (divided by its degrees of freedom, m).

If Z ∼ N(0, 1) and W ∼ χ2
m, then

Z√
W/m

∼ tm

It is bell-shaped with ”fatter” tails than the normal distribution. As degrees of freedom increase,
it converges to the standard normal distribution.

6.4 The F Distribution

The distribution of the ratio of two independently distributed chi-squared variables, each divided
by its degrees of freedom (m and n).

If W ∼ χ2
m and V ∼ χ2

n, then F =
W/m

V/n
∼ Fm,n

7 Chapter 7: Outliers and Data Types

7.1 Outliers

An outlier is a data point that differs significantly from other observations. Distributions with
”thin tails,” like the Normal distribution, have a very low probability of producing extreme
outliers.
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7.2 Data Types

• Experimental Data: Obtained from controlled experiments (e.g., randomized controlled
trials).

• Observational Data: Collected without controlling subject assignment (e.g., surveys).

• Cross-Sectional Data: Data on different subjects at a single point in time.

• Time-Series Data: Data for a single subject collected at multiple points in time.

• Longitudinal (Panel) Data: Data on multiple subjects, each observed at multiple
points in time.
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Part III

Fundamentals of Statistics

8 Chapter 8: Estimation

Statistical inference involves using data from a sample to learn about a population.

8.1 Estimators and Estimates

• Estimator: A function of a sample of data used to infer the value of a population
parameter. It is a random variable.

• Estimate: The specific numerical value of an estimator computed from a particular
sample. It is a fixed number.

8.2 Estimating the Population Mean and Variance

• Sample Mean (Y ): The estimator for the population mean (µY ).

Y =
1

n

n∑
i=1

Yi

• Sample Variance (s2Y ): The estimator for the population variance (σ2
Y ). The division

by n− 1 is a degrees of freedom adjustment.

s2Y =
1

n− 1

n∑
i=1

(Yi − Y )2

• Standard Error of the Mean (SE(Y )): An estimator of the standard deviation of the
sample mean’s sampling distribution.

SE(Y ) =
sY√
n

8.3 Properties of Estimators

Desirable characteristics of an estimator include:

1. Unbiasedness: An estimator is unbiased if its expected value equals the true population
parameter (E[Y ] = µY ).

2. Consistency: An estimator is consistent if it converges in probability to the true param-
eter value as the sample size n → ∞.

3. Efficiency: Among all unbiased estimators, the one with the smallest variance is the
most efficient. The sample mean is the Best Linear Unbiased Estimator (BLUE) of
the population mean.

10



9 Chapter 9: The Distribution of Sample Means

9.1 The Sampling Distribution

The probability distribution of the sample mean Y is called its sampling distribution. If
observations are i.i.d., this distribution has:

• Mean: E[Y ] = µY

• Variance: var(Y ) = σ2
Y
=

σ2
Y
n

9.2 The Law of Large Numbers (LLN)

The LLN states that the sample mean Y converges in probability to the true population mean
µY as the sample size n gets very large.

Y
p−→ µY

9.3 The Central Limit Theorem (CLT)

The CLT states that the sampling distribution of Y is approximately normal for large sample
sizes, regardless of the population distribution.

Y ∼ N

(
µY ,

σ2
Y

n

)
for large n

10 Chapter 10: Hypothesis Testing

A formal procedure for deciding between two claims about a population parameter.

10.1 The Null and Alternative Hypotheses

• Null Hypothesis (H0): The statement being tested, often a claim of ”no effect.” Ex-
ample: H0 : µY = 20.

• Alternative Hypothesis (H1 or HA): The statement accepted if H0 is rejected.

– Two-Sided: H1 : µY ̸= 20.

– One-Sided: H1 : µY > 20 or H1 : µY < 20.

10.2 The p-Value

The p-value is the probability of observing a test statistic as extreme as, or more extreme than,
the one calculated from the sample, assuming H0 is true. A small p-value provides evidence
against H0.

10.3 The t-Statistic

When σ2
Y is unknown, we use the t-statistic:

t =
Y − µY,0

SE(Y )
=

Y − µY,0

sY /
√
n

For large samples, this t-statistic is approximately distributed as a standard normal, N(0, 1).
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10.4 Errors and Significance

• Significance Level (α): A threshold for rejecting H0 (e.g., 0.05). We reject H0 if p-value
< α.

• Type I Error: Rejecting a true null hypothesis (P (Type I Error) = α).

• Type II Error: Failing to reject a false null hypothesis.

• Power of the Test: The probability of correctly rejecting a false null hypothesis.

11 Chapter 11: Confidence Intervals

A confidence interval is a range of values likely to contain the true population parameter. A
95% confidence interval for the population mean µY is:[

Y − 1.96 · SE(Y ), Y + 1.96 · SE(Y )
]

12 Chapter 12: Comparing Two Populations

To compare the means of two independent populations (e.g., groups ’m’ and ’w’):

• Null Hypothesis: H0 : µm − µw = d0 (where often d0 = 0).

• Standard Error of the Difference:

SE(Y m − Y w) =

√
s2m
nm

+
s2w
nw

• t-Statistic for the Difference in Means:

t =
(Y m − Y w)− d0

SE(Y m − Y w)
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Part IV

Problems and Applications

13 Exercise Set 1: Based on Stock & Watson, Ch. 2

1. Let Y be the number of ”heads” that occur when two fair coins are tossed.

1.a. Derive the probability distribution (PMF) of Y.

1.b. Derive the cumulative probability distribution (CDF) of Y.

1.c. Calculate the mean and variance of Y.

2. Using probability tables or software, compute the following probabilities:

2.a. If Y ∼ N(1, 4), find Pr(Y ≤ 3).

2.b. If Y ∼ N(50, 25), find Pr(40 ≤ Y ≤ 52).

2.c. If Y ∼ χ2
10, find Pr(Y > 18.31).

2.d. If Y ∼ t15, find Pr(Y > 1.75).

3. Given µY = 100 and σ2
Y = 43, use the central limit theorem to compute Pr(101 ≤ Y ≤

103) for a random sample of size n = 64.

4. Use the joint probability distribution table for employment status (Y) and college gradu-
ation (X) to answer the following:

Table 1: Joint Distribution of Employment and College Graduation (Sept 2017)

Unemployed (Y=0) Employed (Y=1) Total

Non-College (X=0) 0.026 0.576 0.602
College (X=1) 0.009 0.389 0.398

Total 0.035 0.965 1.000

4.a. Compute E[Y ].

4.b. The unemployment rate is the fraction of the labor force that is unemployed. Show
that this is equal to 1− E[Y ].

4.c. Calculate E[Y |X = 1] and E[Y |X = 0].

4.d. Calculate the unemployment rate for college graduates and non-college graduates.

4.e. If a randomly selected person is unemployed, what is the probability they are a
college graduate?

4.f. Are educational achievement and employment status independent? Explain.

14 Exercise Set 2: Based on Stock & Watson, Ch. 3

1. In a population, µY = 100 and σ2
Y = 43. Use the CLT to find:

1.a. For n = 100, find Pr(Y < 101).

1.b. For n = 165, find Pr(Y > 98).

2. In a survey of 400 likely voters, 215 plan to vote for the incumbent. Let p be the true
fraction of voters who prefer the incumbent.
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2.a. Estimate p.

2.b. Calculate the standard error of your estimate.

2.c. What is the p-value for the test H0 : p = 0.5 vs. H1 : p ̸= 0.5?

2.d. Did the survey contain statistically significant evidence that the incumbent was ahead
at the time of the survey?

3. Data on 5th-grade test scores for 420 California school districts yielded Y = 654.2 and
sY = 19.1.

3.a. Construct a 95% confidence interval for the mean test score.

3.b. The data was divided by class size, with the following results:

Table 2: Test Score Data by Class Size

Class Size Avg. Score (Y ) Std. Dev. (sY ) n

Small (< 20) 657.4 19.4 238
Large (≥ 20) 650.0 17.9 182

Is there statistically significant evidence that districts with smaller classes have higher
average test scores? Explain.

14
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